

DIVISION OF INDUSTRY SERVICES
Plumbing Product Review
P.O. Box 2658
Madison, Wisconsin 53701-2658
TTY: Contact Through Relay

Scott Walker, Governor Dave Ross, Secretary

April 8, 2013

PENTAIR RESIDENTIAL FILTRATION LLC GARTH BABCOCK 5730 N. GLEN PARK ROAD MILWAUKEE WI 53209 GENERAL ELECTRIC APPLIANCES JIM WHITE AP2-120 APPLIANCE PARK LOUISVILLE KY 40225

Re: Description: WATER TREATMENT DEVICE - ACTIVATED CARBON

Manufacturer: GENERAL ELECTRIC Product Name: GENERAL ELECTRIC

Model Number(s): GX1SO1R USING THE FXUVC CARTRIDGE

Product File No: 20130059

The specifications and/or plans for this plumbing product have been reviewed and determined to be in compliance with chapters SPS 382 through 384, Wisconsin Administrative Code, and Chapters 145 and 160, Wisconsin Statutes.

The Department hereby issues an approval based on the Wisconsin Statutes and the Wisconsin Administrative Code. This approval is valid until the end of April 2018.

This approval is contingent upon compliance with the following stipulation(s):

- This product has undergone sufficient testing to document the product's ability to reduce only those
 contaminants and/or substances as specified in this approval letter when the product is installed and
 maintained in strict accordance with the manufacturer's published instructions.
- Where the Department of Natural Resources (DNR) has jurisdiction, a written approval may be required prior to installation of this product in a water supply system to reduce the concentration of a contaminant that exceeds the primary drinking water standards contained in ch. NR 809, Wis. Admin. Code, the enforcement standards contained in ch. NR 140, Wis. Admin. Code, or for a water supply system that is subject to a written advisory opinion by the DNR. For more information contact the DNR Section of Private Water Systems, P.O. Box 7921, Madison, WI 53707, telephone (608) 267-9787.
- If this approved device is modified or additional assertions of function or performance are made, then this approval shall be considered null and void, unless the change is submitted to the department for review and the approval is reaffirmed.
- If the treatment components of this device (e.g., replacement cartridge) are replaced with anything
 other than those originally approved for use with this device, then this approval shall immediately be
 considered null and void.
- These devices will only reduce the concentration of volatile organic chemicals at water outlets that are served by the devices. There are dermal (skin) absorption and inhalation exposure risks associated with volatile organic chemicals. Therefore, using point-of-use devices such as these will not protect all routes of potential exposure. Potentially hazardous exposures to volatile organic chemicals will remain possible at unprotected outlets, particularly hot water outlets (e.g. bathing, showering, clothes washing or dish washing).

If, by way of reputable water analyses, a water supply is known to contain unsafe levels of volatile organic chemicals, then all the water entering the residence must be treated at the point-of-entry using an approved water treatment device to address all potential routes of exposure.

SBD-10564-E (N.10/97) File Ref: 13005901.DOC

General Electric April 8, 2013 Page 2 of 4

Product File No.: 20130059

 These devices will only reduce the concentration of cysts/oocysts at water outlets that are served by the devices. Therefore, using point-of-use devices such as these will not protect all routes of potential exposure. Potentially hazardous exposures to cysts/oocysts will remain possible at unprotected outlets.

The presence of cysts/oocysts strongly suggests that other pathogens (e.g. bacteria, virus) may also be present.

If, by way of reputable water analyses, a water supply is known to contain cysts/oocysts, then all the water entering the residence must be treated at the point-of-entry, using an approved water treatment device, to address all potential routes of exposure thereby providing a biologically safe water supply.

Based on testing data submitted to and reviewed by the department, this approval recognizes that this plumbing product will reduce the concentration of contaminants as specified on pages 1 through 4 of this letter.

HEALTH EFFECTING INORGANIC CONTAMINANT REDUCTION CAPABILITIES PRODUCT FILE NUMBER 20130059 TABLE 1 OF 4

Flow Rate: 1.9 liters per minute (lpm) [0.5 gallons per minute (gpm)]

Capacity: 1,893 liters (I) [500 gallons (gals.)]

Tested Contaminant	Tested Influent Concentration (mg/l)1
Asbestos Fibers (> 10 μm in length)	1.0 x 10 ⁷ to 1.0 x 10 ⁸ F/l
Lead (Pb ⁺²)	0.15 ± 10%
Mercury (Hg ⁺²)	0.006 ± 10%

Other conditions: the contaminant reduction capabilities displayed for table 1 of 4 were generated by testing conducted in accordance with NSF/ANSI Standard 53. To qualify for asbestos reduction, the device must reduce the influent challenge concentrations by \geq 99%. To qualify for lead reduction, the device must reduce the influent challenge concentrations such that all effluent concentrations are \leq 0.010 mg/l. To qualify for mercury reduction, the device must reduce the influent challenge concentrations such that all effluent concentrations are \leq 0.002 mg/l.

1 = milligrams per liter (mg/l) are equivalent to parts per million (ppm)

 \leq = less than or equal to $\mathbf{F/I}$ = fibers per liter

μm = micrometers

 \pm = plus or minus

* = unless otherwise indicated

> = greater than

≥ = greater than or equal to

HEALTH EFFECTING BIOLOGICAL CONTAMINANT REDUCTION CAPABILITIES PRODUCT FILE NUMBER 20130059 TABLE 2 OF 4

Flow Rate: 1.9 liters per minute (lpm) [0.5 gallons per minute (gpm)]

Capacity: dependant on the type and quantity of particulate matter present, the need for serviced may

be indicated by a significant decrease in flow rate.

Tested Contaminant	Influent Challenge (#/ml)
Cysts/Oocysts ¹	≥ 5.0 x 10 ⁴

Other Conditions: the contaminant reduction performance capabilities displayed for Table 2 of 4 were verified by testing conducted in accordance with NSF *International* Standard 53. To qualify for cyst/oocyst reduction, the device must reduce the influent challenge concentrations by \geq 99.95% at each sample point.

^{1 =} the specific organisms covered under this testing protocol include cryptosporidium parvum, entamoeba histolytica, giardia lamblia and toxoplasma gondii

^{≥ =} greater than or equal to

General Electric April 8, 2013 Page 3 of 4

Product File No.: 20130059

AESTHETIC INORGANIC CONTAMINANT REDUCTION CAPABILITIES PRODUCT FILE NUMBER 20130059 TABLE 3 OF 4

Flow Rate: 1.9 liters per minute (lpm) [0.5 gallons per minute (gpm)]

Capacity: 1,893 liters (I) [500 gallons (gals.)] for free chlorine reduction. For particulate reduction, the

capacity is dependant on the type and quantity of particulate matter present, the need for

service may be indicated by a significant decrease in flow rate.

Tested Contaminant	Average Influent Challenge (mg/l) ¹
Chlorine (free)	2.0 ± 10%
Particulates (0.5 to < 1.0 μm)	≥ 1.0 x 10 ⁴ #/ml

Other Conditions: the contaminant reduction performance capabilities displayed for Table 3 of 4 were verified by testing conducted in accordance with NSF *International* Standard 42. To qualify for free chlorine reduction, the device must reduce the influent challenge concentrations by $\geq 50\%$; meeting the free chlorine reduction requirements also qualifies the device for the reduction of aesthetic, organic, taste and odor reduction (e.g. geosmin, methylisoborneol); this does not include hydrogen sulfide. To qualify for particulate reduction (Class I) the device must reduce the influent challenge concentrations by $\geq 85\%$.

1 = milligrams per liter (mg/l) are equivalent to parts per million (ppm)

≥ = greater than or equal to

 \pm = plus or minus

HEALTH EFFECTING ORGANIC CONTAMINANT REDUCTION CAPABILITIES PRODUCT FILE NUMBER 20130059 TABLE 4 OF 4

Flow Rate: 1.9 liters per minute (lpm) [0.5 gallons per minute (gpm)]

Capacity: 1,893 liters (I) [500 gallons (gals.)]

Tested Contaminant	Influent Challenge (µg/l) 1
Alachlor	50
Atrazine	100
Benzene	81
Carbofuran	190
Carbon tetrachloride	78
Chlorobenzene	77
Chloropicrin	15
2,4-D	110
Dibromochloropropane (DBCP)	52
o-Dichlorobenzene	80
p-Dichlorobenzene	40
1,2-Dichloroethane	88
1,1-Dichloroethylene	83
cis-1,2-Dichloroethylene	170
trans-1,2-Dichloroethylene	86
1,2-Dichloropropane	80
cis-1,3-Dichloropropylene	79
Dinoseb	170
Endrin	53
Ethylbenzene	88
Ethylene dibromide (EDB)	44
Haloacetonitriles (HAN):	-
Bromochloroacetonitrile	22
Dibromoacetonitrile	24
Dichloroacetonitrile	9.6

General Electric April 8, 2013 Page 4 of 4

Product File No.: 20130059 (continued from previous page)

Tested Contaminant	Influent Challenge (µg/l) ¹
Trichloroacetonitrile	15
Haloketones (HK):	-
1,1-Dichloro-2-propanone	7.2
1,1,1-Trichloro-2-propanone	8.2
Heptachlor (H-34, HEPTOX)	80
Heptachlor epoxide	10.7
Hexachlorobutadiene	44
Hexachlorocyclopentadiene	60
Lindane	55
Methoxychlor	50
Methyl <i>tert</i> -butyl ether [▲]	15.0 ± 20%
Pentachlorophenol	96
Simazine	120
Styrene	150
1,1,2,2-Tetrachloroethane	81
Tetrachloroethylene	81
Toluene	78
2,4,5-TP (silvex)	270
Tribromoacetic acid	42
1,2,4-Trichlorobenzene	160
1,1,1-Trichloroethane	84
1,1,2-Trichloroethane	150
Trichloroethylene	180
Trihalomethanes (chloroform surrogate)	300
Xylenes (total)	70

Other Conditions: the contaminant reduction performance capabilities displayed for Table 4 of 4 were verified by testing conducted in accordance with NSF *International* Standard 53. To qualify for the reduction of the organic contaminants listed above, the device must reduce the influent challenge concentration of chloroform at 300 μ g/l \pm 10% at each sample point by a minimum of 95%. To qualify for methyl *tert*-butyl ether, the device must reduce the influent challenge concentrations such that all effluent concentrations are \leq 5.0 μ g/l

▲ = tested independently of the chloroform surrogate, under NSF Standard 53

 $1 = \text{micrograms per liter } (\mu g/I) \text{ are equivalent to parts per billion (ppb)}$

 \leq = less than or equal to \pm = plus or minus

This device was tested under controlled laboratory, or field, conditions. The actual performance of this device for a specific end use installation will vary from the tested conditions based on local factors such as water pressure, water temperature and water chemistry.

The department is in no way endorsing this product or any advertising, and is not responsible for any situation which may result from its use.

Sincerely,

Glen W. Schlueter
Plumbing Product Reviewer
Department of Safety and Professional Services
Division of Industry Services
Bureau of Technical Services
(608) 267-1401 Phone
(608) 266-2602 Fax
glen.schlueter@wi.gov E-mail